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1 Introduction 

Cellular processes are biochemical events that are typically achieved by the interactions 
of proteins with one another. The elucidation of protein interactions is therefore the an 
essential step toward understanding the biology of cellular processes. Many experimental 
methods have been developed to detect protein-protein interactions, however, none of the 
current experimental methods is adequate to interrogate the entire interactome (Ng and 
Tan, 2004; von Mering et al., 2002). It is therefore useful to develop complementary 
computational methods for predicting new protein-protein interactions. 

Several computational techniques have been proposed to predict protein-protein 
interactions. For example, potential protein interactions can be derived from gene context 
analysis such as gene neighbourhood (Dandekar et al., 1998; Overbeek et al., 1999), gene 
fusion (Enright et al., 1999; Marcotte, 1999), and gene co-occurrences and phylogenetic 
profiles (Huynen and Bock, 1998; Pellegrini et al., 1999). Alternatively, the 
physiochemical properties or tertiary structure of proteins can also be used for predicting 
interactions (Bock and Gough, 2001; Martin et al., 2004). 

Recently, however, there is an increased focus on using protein domains to predict 
protein-protein interactions (Deng et al., 2002; Han et al., 2003, 2004; Ng et al., 2003; 
Wan and Jong, 2002). Protein domains are evolutionarily-conserved functional subunits 
in proteins found across different proteins. They are often found to participate in 
intermolecular interactions with one another. The existence of certain domains in proteins 
can therefore suggest the possibility of interaction between two proteins. As such, the 
analysis of many protein-protein interactions can be reduced to understanding the 
underlying domain-domain interactions between two proteins. 

Domain-based protein interaction prediction methods generally consist of two main 
steps: 

1 inferring domain-domain interactions from known protein interactions 

2 predicting protein interactions based on the inferred domain-domain interaction 
information. 

A few domain-based interaction detection techniques have recently been proposed.  
Deng et al. (2002) described a Maximum Likelihood estimation technique to infer  
domain-domain interactions that was then used to predict protein interactions. Wan and 
Jong (2002) presented an alternative statistical scoring system as a measure of the 
interaction probability between domains. Ng et al. (2003) devised an integrative approach 
to infer the protein domain interactions from other data sources in addition to 
experimentally determined protein interactions. Han et al. designed a probabilistic 
framework that takes domain combinations instead of single domains as basic units of 
protein interactions (Han et al., 2003, 2004). 
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These proposed techniques can be grouped into two main paradigms in terms of the 
way they infer domain-domain interactions. The domain interactions that are used for 
predicting protein-protein interactions are learned either (1) from an interacting protein 
set or positive set only (Deng et al., 2002; Ng et al., 2003; Wan and Jong, 2002), or (2) 
from both an interacting protein set and an artificially generated non-interacting protein 
set as negative set; the latter being generated by randomly pairing the proteins (Han et al., 
2003, 2004). In the case of (1) where learning is conducted only from an interacting 
protein set, many false positive domain pairs may be derived because these domain pairs 
may occur in the (unavailable) negative set with high frequency. In the case of (2), the 
use of a putative negative data set helps alleviate this problem. However, using 
artificially generated non-interacting protein set as negative set is inadequate for inferring 
domain-domain interactions because the randomly generated negative dataset may 
contain unknown interacting protein pairs. In addition, if the artificially generated 
negative dataset is subsequently used in evaluating the performance of classifier, it will 
lead to inaccurate computation of the actual sensitivity and specificity of the technique. 

In this paper, we propose a novel probabilistic technique to infer domain-domain 
interactions using both positive and negative training datasets. Our probabilistic model 
was able to outperform other domain-based techniques in predicting potential protein 
interactions. Unlike conventional approaches that use random pairing to generate 
artificial non-interacting protein pairs as negative training data, we generate biologically 
meaningful non-interacting protein pairs based on the proteins’ biological information, 
namely, proteins are most unlikely to interact if they are from different cellular locations 
and are involved in different biological processes. We showed that the performance of 
classifier is improved with the more confident negative dataset. We also showed that 
improvements were consistently obtained across interaction data from multiple species, 
namely, yeast, fly, and worm (Li et al., 2005)1. 

2 Methods 

Our proposed approach classifies a protein pair to be either interacting or non-interacting 
based on inferred underlying domain-domain interactions. The approach consists of four 
steps as follows: 

• we pre-process the biological annotations for each training protein 

• we generate a biologically significant negative set N (non-interacting protein pairs) 
based on the biological annotations 

• we infer domain-domain interactions based on the interacting proteins pair set I and 
the negative set N 

• finally, we build a classifier based on the interacting probabilities of domain pairs. 

Below, we present the methods for these four steps in turn. 

2.1 Pre-process biological annotations 

Recent progress in genomic sequencing, computational biology, and ontology 
development has presented an opportunity to investigate biological systems from a more 
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information-driven perspective. In our approach, we propose to make use of the 
increasing availability of functional annotations of proteins to generate a more 
biologically significant negative training data set – unlike conventional approaches that 
conveniently use random pairing to generate artificial non-interacting protein pairs as 
negative training data – as a means to improve classification performance. In our earlier 
work (Li et al., 2005) we have used the functional annotations from the MIPS database 
(http://mips.gsf.de/genre/proj/yeast/index.jsp) for yeast proteins. In this work, in order to 
cover the proteins from species other than yeast, we use the annotations from the more 
comprehensive Gene Ontology (GO) (http://www.geneontology.org/) as the source of 
biological information to help us create a more biologically meaningful set of negative 
training data. 

GO consists of biological annotations under three main categories: molecular 
functions, biological processes and cellular components. A molecular function is a 
biological activity, such as catalytic or binding activities, at the molecular level.  
A biological process is a series of events accomplished by one or more ordered 
assemblies of molecular functions. A cellular component is a component of a cell but 
with the proviso that it is part of some larger object. 

Physically, proteins that are in different cellular locations are less likely to interact 
because of their situations. Biologically, genes (and their product proteins) from the 
different biological process are also less likely to interact than those within the same 
biological process. As such, we use both biological process and cellular locations as a 
dual constraint to generate our negative set. Proteins are most unlikely to interact if they 
are from different cellular locations and biological processes. 

GO terms are organised in structures called Directed Acyclic Graphs (DAGs), where 
a generic biological process is progressively broken down into more specific terms or 
types. As such, two related proteins may be annotated with different GO terms that are 
located in different levels of the ontology. To facilitate easy comparison of the biological 
annotations of the training proteins, we have chosen a fixed cut-off level of level three; in 
other words, any GO term beyond the cut-off level is considered as the same location or 
biological process as the corresponding parent GO term at level three. 

As such, we must first perform a preprocessing step to normalise the different GO 
annotations of the training proteins to the cut-off level so that all proteins are annotated 
with GO terms at level three. Given two proteins, we will regard that they are not 
involved in the same biological process or cellular location only if their level-three GO 
cellular locations and biological processes are different. Such strict selection strategy 
(higher level cut off) creates a much purer negative set for training our classifier. 

2.2 Generate the negative set 

After annotating the training proteins with GO cellular locations and biological processes 
at the cut-off level, we are now ready to generate a biologically meaningful negative set 
by pairing those proteins involved in different biological process and from different 
cellular locations. Algorithm 1 shows how to generate non-interacting protein pairs 
(negative set). 
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Algorithm 1:   Generate non-interacting protein pairs 

 

In Algorithm 1, for each protein in P, the set of proteins of interest, we retrieve the 
biological information about its locations and biological processes (Steps 5–6) from the 
GO. Then, from Steps 9–18, we check each protein pair (pi, pj) in protein pair set PS: if it 
is already in the interacting protein set I, we eliminate it from PS; otherwise, if pi and pj 
are located at different cellular locations and from different biological processes, we add 
them into negative set N. 

Note that in Step 12, a protein (pi or pj) may be located at multiple locations and 
involved in multiple biological process. We consider (pi, pj) to be non-interacting only if 
none of pi’s locations and biological processes match the pj’s locations and biological 
processes. 

2.3 Infer domain-domain interactions 

The objective of this next step is to assign interaction probabilities to each domain pair 
based on its occurrence in the protein-protein interacting set I and the negative set N. For 
a protein pair (pi, pj) ∈ I, we infer that domain di,r potentially interacts with domain dj,s 
with a probability of l/(|pi| × |pj|), where |pi| and |pj| are the number of domains in proteins 
pi and pj respectively; di,r and dj,s are the rth and sth domains of proteins pi and pj 
respectively. 

Given that a domain pair (dx, dy) may occur in many interacting protein pairs of I, the 
interacting frequency of (dx, dy) in I is defined as: 

| |

1

1(( , ), ) ( , )
| | | |

I

x y i x y i i
i x y

N d d I d d
p p

λ
=

= ×
×∑  (1) 

where ( , )i i
x yp p  is the ith protein pair in I and λi(dx, dy) is the total number of occurrences 

of the domain pair (dx, dy) in ( , ).i i
x yp p  We compute N((dx, dy), N), the interacting 

frequency of (dx, dy) in N, in a similar way: 
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N d d N d d
p p

λ
=

= ×
×∑  (2) 

Let a set of pre-defined classes be C = {I, N} and all the domain pairs set be DP. For any 
domain pair (dx, dy) ∈ DP, their interacting probability P((dx, dy)|ce), with Laplacian 
smoothing and ce ∈ C, is defined as: 

| |

1

1 (( , ), )
(( , ) | ) .

| | (( , ), )
x y e

x y e C
x y ek

N d d c
P d d c

DP N d d c
=

+
=

+∑
 (3) 

For a domain pair (dx, dy), the greater the interacting probability P((dx, dy)|I), the more 
frequent it occurs in the interacting set I. However, since such a domain pair may also be 
chanced occurrences in class I, it is necessary to check its interacting probability in N: 
P((dx, dy)|N). Obviously, if P((dx, dy)|I) is significantly larger than P((dx, dy)|N), then the 
domain pair (dx, dy) is likely to be a genuine domain-domain interaction. Otherwise, if 
P((dx, dy)|N) is similar or even bigger than P((dx, dy)|I), then the domain pair is unlikely to 
be interacting. In other words, to check if a domain pair (dx, dy) interacts, we compute its 
interacting probabilities in both interacting set I and negative set N. 

Note that the purity of N can affect the accuracy of inferred domain-domain 
interactions. If N were generated from randomly paired proteins, the false negative 
protein pairs in N will result in the inference of many domain pairs that should have 
occurred only in interacting protein set (i.e., positive class). This will result in assigning 
inaccurate interacting probabilities to domain pairs and subsequently affect the accuracy 
of the eventual classifier to infer protein interactions. 

2.4 Build a protein interaction classifier 

Given a protein pair (pi, pj), in order to perform classification (i.e., to judge whether the 
proteins may interact with each other or not), we compute the posterior probability 
P(ce|(pi, pj)), ce ∈ C. The prior probability P(ce) of class ce is defined as: 

( , ( , )), ( , )
( ) .

| | | |
e i j i j

e

p c p p p p I U
P c

I N
∈

=
+

∑ ∪
 (4) 

Based on equations (4) and (3), our proposed technique uses the joint probabilities of 
domain pairs and classes to estimate the probabilities of classes given a protein pair. Our 
classifier is described as follows: 

| | | |
, ,1

| | | | | |
, ,11

( ) (( , ) | )
( | ( , )) .

( ) (( , ) | )

i j

i j

p p
e i r j s em

e i j C p p
e i r j s emk

p c p d d c
P c p p

p c p d d c

×

=
×

==

×
=

×
∏

∑ ∏
 (5) 

For a protein pair (pi, pj), the class with highest P(ce|(pi, pj)) is assigned as its final class 
label. In other words, if arg max ( | ( , )),

ec e i jI P c p p=  then the protein pair (pi, pj) will be 
classified as an interacting pair. Otherwise, it is classified as non-interacting. 
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3 Evaluation 

In this section, we evaluate the proposed technique for predicting protein interactions. In 
order to evaluate the overall performance of our proposed technique, we have performed 
comprehensive experiments with the interaction data of the species yeast (S. cerevisiae), 
worm (C. elegans) and fly (D. melanogaster). 

3.1 Data preparation 

Interacting proteins are retrieved from DIP (http://dip.doe-mbi.ucla.edu/dip/) – a 
comprehensive catalogue of about 55,708 experimentally determined protein-protein 
interactions in over 110 organisms. In DIP (10/03/2004 version), yeast has 15,461 protein 
interactions among 4,773 proteins, worm has 4,030 protein interactions among 2,638 
proteins, and fly has 20,988 interactions among 7,068 proteins. 

Positive and negative datasets are employed to train a classifier and to evaluate the 
performance of our method. For each species (yeast, worm and fly), we select all 
interactions in DIP to construct our positive dataset I. The negative set of non-interacting 
protein pairs used in this work is constructed using Algorithm 1 described in the previous 
section. Proteins are paired up only if they are not from the same cellular location and 
biological process. This results in a negative set of 1,025,063 protein pairs for yeast, 
439,057 protein pairs for fly and 5,128 protein pairs for worm. To avoid size bias between 
the positive and negative datasets, for each species, we randomly assembled a negative 
set N with the same number of protein pairs as I. 

The domain information of proteins are obtained from the Pfam database  
(Corpet et al., 2002), which contains a large collection of multiple sequence alignments 
and profile hidden Markov models of protein domains. Both Pfam-A and Pfam-B are used 
to ensure sufficient coverage. 

3.2 Experimental results 

Yeast is a well-studied model organism that is generally used to evaluate the prediction 
performance of protein interaction systems. As such, we first report the results of our 
technique on species yeast in details and compare it with other techniques to illustrate the 
effectiveness of our proposed technique. 

For yeast, we infer the domain-domain interactions from both positive set I and 
negative set N. Each domain pair gets an interacting probability for I and N using 
equation (3). 

For illustration, Table 1 shows the top ten interacting and top ten non-interacting 
domain pairs respectively. The top interacting domain pairs have maximal values of 
P((dx, dy)|I)/P((dx, dy)|N). In other words, these are domain pairs with the biggest 
P((dx, dy)|I) and smallest P((dx, dy)|N) values. The top non-interacting domain pairs show 
those with significant occurrence in non-interacting protein pairs. As we know, not all 
domain pairs derived from protein-protein interactions are truly interacting as some could 
occur in interacting proteins by chance. This could lead to false positive domain-domain 
predictions if we learn from the positive class I only. 
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Table 1 Top ten interacting and non-interacting domain pairs 

Interacting domain pairs Non-interacting domain pairs 

(PF00400, PF00400) (PF00400, PF00624) 
(PF00118, PF00400) (PF00069, PF00399) 
(PF00069, PF07714) (PF00153, PF00624) 
(PF00076, PF00514) (PF00624, PF01239) 
(PF00271, PF00400) (PF00076, PF00624) 
(PF00076, PF00400) (PF00153, PF00399) 
(PF00806, PF07714) (PF00399, PF00400) 
(PF00270, PF00400) (PF00399, PF07714) 
(PF00400, PF01423) (PF00271, PF00624) 
(PF00400, PF00514) (PF00005, PF00399) 

For example, the domain pairs (PF07714, PF00400) and (PF00069, PF00400) occurred 
170 and 66 times in I respectively. If we just learn from I, it is natural to conclude that 
they are interacting domain pairs as they have high occurrence in interacting set. 
However, with the help of our biologically refined negative class N, we were able to 
eliminate them since both domain pairs also occurred 901 and 860 times in N 
respectively. Furthermore, since our negative class N is more biologically significant than 
randomly paired proteins, we can estimate the interacting probabilities of each domain 
pair more precisely, resulting in a more accurate classifier. 

For evaluation, we use the inferred domain-domain interactions to classify protein 
pairs. A 5-fold cross validation is performed to test the accuracy of the classifier 
described in equation (5). We compare our results with the reported results using the 
‘Hybrid Classification’ technique from Han et al. (2003) and the ‘Possibility Ranking’ 
technique from Han et al. (2004), both of which used positive and negative training 
datasets for improved protein interaction prediction in yeast. Table 2 shows the 
comparison results of four domain-based protein interaction prediction techniques in 
terms of sensitivity and specificity. The first two techniques were from Han et al. (2003, 
2004). The other two are our probabilistic technique on two different negative sets, 
namely, randomly paired negative set (random pairs) and the biologically significant 
negative set (biological refinement). 

Table 2 Comparative results of different domain-based protein interaction prediction methods 
on yeast 

Prediction method Specificity Sensitivity 

Hybrid Classification (Han et al., 2003) 56.00 86.00 
Possibility Ranking (Han et al., 2004) 75.00 84.36 
Our method with random pairs 84.19 86.80 
Our method with biological refinement 91.56 91.16 

Compared with the techniques in Han et al. (2003, 2004), our probabilistic technique was 
able to achieve much higher specificity at similar sensitivity regardless of whether it has 
been trained with random protein pairs as the negative set or the refined negative set 
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assembled using domain knowledge. Our classifier that was trained with the biologically 
refined negative dataset gave the best performance, obtaining an increase of 7.4% and 
4.4% in specificity and sensitivity respectively as compared to the same probabilistic 
classifier trained with negative dataset of randomly paired proteins. This shows that the 
use of biological domain knowledge for negative dataset construction can benefit the 
prediction performance of the eventual classifier built on the training data. 

The techniques from Han et al. (2003, 2004) were not tested with cross-validation. 
They randomly selected 20% DIP data as test set and the remaining 80% as training set. 
Then they repeated their experiments three times and got the average results. In fact, as 
reported in Han et al. (2003), their specificities was rather fluctuating according to the 
selected test sets. Our method is more robust as our results fluctuated only within 3% in 
each division of cross validation. 

We also investigated how the size of negative set may affect the performance of our 
classifier. We systematically increase the size of N by 2–10 times. The results with 
respect to varying sizes of N are shown in Table 3. Generally, with the increase in the 
size of the negative set, the specificity of our classifier increases while the sensitivity 
decreases. One reason that sensitivity has decreased is that the imbalance of positive and 
negative training set makes our classifier biased towards the negative class N. However, 
we believe that it is possible to get better performance through intelligently selecting the 
negatives, and we will leave this problem as our future study. 

Table 3 Performance of our classifier with different sizes of N 

Size ratio 2 4 6 8 10 

Specificity 92.18 94.32 95.12 96.35 96.43 
Sensitivity 89.63 83.82 79.12 74.27 73.30 

In addition to applying our method on the standard model organism yeast, we also 
investigate the applicability of our approach in two other species, fly and worm, that are 
relatively less well-studied. Surprisingly, we were also able to achieve a high 80.77% and 
87.07% for fly and worm respectively in terms of F-measure. Given that these two species 
are not well studied (with incomplete interactomes and biological annotations), the 
classification accuracy for this two species obtained by our method is therefore quite 
impressive. 

Finally, in order to systematically investigate the effectiveness of different methods to 
construct negative training set for protein interaction prediction, we perform the 
comparison test among four different methods: 

• using randomly selected negative 

• using biological process only 

• using location only 

• using both location and biological process. 

Figure 1 shows the comparison results for the four different methods to construct the 
negative set in terms of F-measure. Overall, the results depicted in the figure shows that 
our technique that uses both location and biological process to construct negative set 
achieves the best results. In yeast, this technique was able to achieve 5.88%, 5.18% and 
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1.58% higher F-measure than other three methods of constructing negative sets 
(techniques 1–3) respectively. Similarly, compared with other three methods, our 
technique in fly can achieve 8.39%, 3.93% and 2.32% higher improvement and in worm 
we can achieve 13.17%, 9.43% and 2.79% higher improvement. Our results from the 
three species (of varying sizes of interaction data sets as well as functional annotations) 
are consistently better than other three methods, indicating we can build a more accurate 
classifier by combining the location and biological process to construct much purer 
negative set, and that the performance improvement is not a species-specific artifact. 

Figure 1 Comparison of four different methods to construct negative training sets for  
domain-based protein interaction prediction 

 

Figure 1 also shows that even using only location or biological process GO annotations to 
construct negative set can still get significantly better results than using randomly 
selected negative set in all the three species, signifying the advantages of using a 
biologically meaningful negative training set over a randomly generated one. 
Interestingly, compared with biological process annotations, the cellular location 
information can achieve better results. This is reasonable because the physical constraint 
is a stricter restriction, while proteins in different biological processes may interact with 
each other as some proteins do play multiple roles. 

4 Conclusions 

In this paper, we predict protein-protein interactions based on domain information. Our 
learning algorithm first constructs a biologically meaningful negative set based on 
biological annotations from GO. It then infers the underlying domain interactions based 
on their probabilities in both interacting class and non-interacting class. A probabilistic 
classifier for predicting protein interactions is then built upon the inferred probabilistic 



   

 

   

   
 

   

   

 

   

    Improving domain-based protein interaction prediction 11    
 

    
 
 

   

   
 

   

   

 

   

       
 

domain interactions. Our experimental results in multiple species – yeast, fly, and  
worm – show that our probabilistic approach is effective and outperforms other similar  
domain-based techniques for protein interaction prediction. Our results also suggest that 
it is advantageous to generate biologically meaningful non-interacting protein pairs based 
on the proteins’ biological annotations instead of the conventional approaches that use 
random pairing to generate artificial non-interacting protein pairs as negative training 
data, as such careful generation of negative training data set was found to improve 
classification performance. 

One inherent limitation of using domain-based methods to predict protein interactions 
is that not all proteins have domain information. As such, the domain-based methods 
cannot be used to predict interactions for those proteins that are currently without domain 
information. Therefore, one possible future work that we will be investigating is to 
integrate other biological features such as ‘motif’ and ‘amino acid composition’ with the 
domain information for more comprehensive and accurate predictions of protein 
interactions. 
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1This manuscript is based on our recent conference paper (Li et al., 2005), with additional materials 
on the use of GO annotations for defining biologically-significant negative datasets, and a more 
comprehensive evaluation of our proposed approach with results based on interaction data from 
multiple species. 


